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PREFACE

Cable in bending was used for the first time in 1957. One of

the first uses was to mount the first electronics systems to be

flown through reentry. The project manager was Dr. Von Braun and

the work was done for the Army Jupiter missile. There were

thirteen systems, and they all performed their function well from

blastoff to landing.

This original work was all curved cable. It was used

primarily for isolation from shock, vibration, and noise. These
curved cable shock and vibration systems are now being made in at

least five countries throughout the world with a gross sales

reaching many millions of dollars. Even after 30 years, the number

of engineers using cable isolation continues to expand.

Cable compliance started at Goddard Space Flight Center in

1972. The primary purpose for the first system was to control

motion in three degrees of freedom while allowing compliance in the

other three degrees of freedom. These new systems use straight

cable instead of curved cable.

Four years ago, Wayne Eklund, Ray Burkhardt, and Jim Kerley

started the typical configuration developed in the first section of

this report. Since that initial patented system, compliance has

moved into various areas for many uses for both the space centers

and the commercial world as well. It has found a most useful

solution as an aid to the elderly and the handicapped. This report

will summarize much of this latest work and demonstrate its

possible use in many other areas.

Chapter ii is a complete compliant system developed by Peter

Rosonni. It shows the development of design, the assembly, and the

installation in the robotics laboratory.
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CHAPTER 1

COMPLIANCE IN ROBOTICS

The best way to visualize robotic compliance is to study the

action of human finger, wrist, and elbow motions as a whole. The

simple act of pulling open a desk drawer illustrates this. At

first the hand goes down in a limber manner until it finds the

handle. Next, the hand, the wrist, and shoulder increase their

forces slightly as they translate and rotate in all three planes

until they are aligned for the pull. The fingers tighten up as the

arm pulls the drawer open. In robotics the same problem is

encountered every day. The robot has a gripper or grasping

mechanism that mates with the target to be lifted. Since the robot

arm is heavy and stiff, it can damage the target if it is not lined

up properly. It could be a little high, it could be a little wide,

it could be too far away, and it could approach the target at the

wrong angle. This misalignment is a combination of translation,

along with rotation, about the X, Y, and Z axes. It would be very

desirable, then, to have a compliant wrist on the robot that could

conform to all six degrees of freedom and perform the desired task

with the target. This report describes a new compliant patent

(4,946,421) that does just that.

This paper describes robotic compliant systems with

capabilities of handling a few ounces, several pounds, 200 pounds,

800 pounds, and 4,000 pounds. The detailed descriptions of these

compliance mechanisms for different weights are described later in

various sections of this report.

Applications and other inventions are described in this

report. These include various hand controllers (,,joysticks") for

stimulating robotic motion with the operator's hand, a walker for

the handicapped that improves physical therapy, a variable

compliance mechanism that approaches the target with considerable

compliance and then tightens up to perform a function, various

methods of manufacturing for the handling of cable in large and

small compliant systems, and a compliant robotic station for the

handicapped. All of these compliance mechanisms add another
dimension to the robotics field by making the robotic action more

like the normal arm. They further take the work of compliant

robotic principles from the NASA labs and apply it to the elderly

and handicapped.

Six-Degree-of-Freedom Action With Cables

The basic patent in compliance is 4,946,421, shown in Figure

i. The parts are described as follows: (i) the attachment arm to

target, (2) attachment to robot, (3 through 18) cable that gives

the compliance, (19) a "U" spreader bar attached to the robotic

arm, (20) a U spreader bar that attaches to the target, (21) cable

holders, (22) the screws used to clamp the cable, (23) corner

angles, and (24) cable ends.



/

• i

ii _ i_

Figure 2 is a Pal2 computer model of the basic device drawn in

Figure i. Each cable is made up of eight short beam elements

attached end to end. The remaining structure is composed of

relatively stiff beams and plates. The next seven figures give a

graphic description of how the cable six-degree-of-freedom

compliant mechanism bends and moves. One of the Pal2 computer

models and solutions is included in an addendum to this section on
page 13.

Figure 3 illustrates the cable motion with a torsion about the

Y axis. The lower U frame is held rigid, while the upper U frame

is rotated about Y. Notice the rotation of the corner angles.

Notice the symmetric motion of all four cables illustrated and that

any motion of the upper U frame causes all of the cables to move.

Figure 4 illustrates the same torsion load as Figure 3. This

view demonstrates the similarity of the motions of the cables on

the right and on the left. In Figure 3, the corner angles rotate
about the Y axis. Figure 4 rotation shows that rotation is the

same for all four corners.

Figure 5 is a view of rotation about the Z axis. Notice that

cable pairs have rotation shapes that are mirror-images of adjacent

pairs. The torque is positive about the Z axis and puts the cables

in the upper right and lower left in tension, as well as in

bending. It compresses the cables in the lower right and the upper

left. This presents one general rule about cable motion in this

form. When the cables are in tension and taking a load, the cables

tend to straighten out. The cable about the corner angle tends to

open up. A different situation occurs when the cables are

unloading; they form an angle less than 90 degrees.

Figure 6 is a top view of the same positive torque about the

Z axis. Notice in the upper right and lower left that the cables

are tending to straighten out. They are taking most of the load.

In the upper left and lower right, the cables are taking little or

no load. Notice that the cables that are unloading must have a

place to go. If they don't, the cables will tend to go into

compression, causing the cable strands to open up or "bird-cage."

This could cause a permanent set in the cables and change their

characteristics. Notice that the bending load in all eight of the

cables in tension is the same. The other eight have a loss of

load, and they take the same bending configuration.

Figure 7 illustrates a force in the X direction. Notice that

the loads are primarily taken by the cables on the left side of the

drawing. They have a combination of bending and tension depending

upon the load. The cables on the right are bending but not nearly

as high as the cables on the left. As the deflection goes up, the

right-hand cables take on more and more bending and eventually

approach the tension similar to the left. The cables on the left

are tending to go in tension. The only structure preventing this

is the corner angle. This corner angle is most important, since it

completely controls the actions of both the left and right cables.
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Notice that the corner angles are rotating as they take on load.

It is only by rotating the right-hand angles that the cable can

take on some of the load. These rotations and these proportions of

the loads are very important when the cables are prestressed. This

type of variable compliance will be covered in another section, but

it is essential to see these simple motions first.

Figure 8 is a computer model of a force in the Z direction.

Note in this type of load that all of the cables take the same

shape in bending. This is the simplest type of action to predict.

It is very easy to test one cable and proportion it up to any

number of cables; in one case, 386 cables were used. Note that a

large load will draw all of the cables in toward the center, as the

upper U goes up. It will thus bend in two directions at the same

time, up and in. This is another feature of this type of patent.

If the cable were a stiff bar, the stresses would be very high, but

with compliant cable, the deflections do not go up proportionally

to force. The cable gets stiffer as it moves, while a bar will

maintain a constant stiffness ratio. This feature makes this

compliant patent adaptable to a wide variation of loads.

Figure 9 is a combination of loads in the X direction, the Y

direction, and the Z direction simultaneously. The degrees of

bending in any of these loads can be calculated. However, since

the stiffness of the cable system depends on deflection, the loads

in the cables are not a simple matter of adding one load on top of

the other. Another item to consider is that a force in the Y

direction also causes motions in the X and Z directions. Thus the

system, with the floating corner angle, can adapt itself to many of
these load conditions. Over a period of years, many types of load

conditions have been tried, and the cables have always been adapted

to suit the particular application. Remember that for some of these

features, variable compliance is necessary, which will be described

later in this report.

The Pal2 finite element analysis was chosen as a computer

program to analyze these systems because it gave a good picture of
what the cable was doing. When we use i/4-inch cable, we load it

in shear of approximately i0 pounds. This same cable in tension

has a breaking strength of over 6,000 pounds. Thus the stress in

the cable is low. The stress readings on the computer runs are

fictitious and the deflections are fictitious, but the proportional

deflections are correct in the lower load conditions. In order to

get a good similitude, each individual cable was broken down into

eight segments. Then the properties were inserted in the matrices

that would give the desirable motion. Once this program was set up

for i/4-inch cable, it could be applied to any size cable by

dimensional analysis. It could also be applied to any length cable

suitable for compliance.
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Figure i. Typical compliance model.
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THE FOLLOWING COMPUTER PROGRAM IS

FOR FIGURE 5

(TORQUE

AND FIGURE

ABOUT Z)

6

THE COMPUTER SOFTWARE IS FROM

MACNEAL SCHWENDLER CORP.

THE PROGRAM IS PAL2
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connect 13 to 14

connect 9 to 13

connect 9 to 14

connect 15 to 16

connect 12 to 16

connect ii to 12

connect Ii to 15

connect ii to 16

connect 1 to 17

connect 3 to 17

connect 4 to 17

connect 2 to 17

connect 12 to 18

connect I@ to 18

connect 9 to 18

connect Ii to 18

connect 9 to Ii

connect 1 to 3

connect 2 to 4

connect 12 to i@

connect 19 to 21

connect 2@ to 22

connect 24 to 26

connect 23 to 25

connect 69 to 2@

connect 138 to 2@

connect 76 to 22

connect 131 to 22

connect 33 to 19

connect 118 to 19

connect III to 21

connect 4@ to 21

connect 41 to 25

connect II@ to 25

connect 48 to 23

connect 1@3 to 23

connect 61 to 24

connect 83 to 24

connect 68 to 26

connect 9@ to 26

Material 20.@E6, 10.@E6, @,.33, 36@@0., 1.3E-5, 7@.@

Beam Type 1 .@5, 3.9E-4, 1.9E-4, 1.9E-4, .@5, .@5, .@@2,

connect 41 to 42

connect 42 to 43

connect 43 to 44

connect 44 to 45

connect 45 to 46

.882,

17



connect 46 to 47

connect 47 to 5

connect 48 to 49

connect 49 to 50

connect 5@ to 51

connect 51 to 52

connect 52 to 53

connect 53 to 54

connect 54 to 1

connect 6 to 34

connect 34 to 35

connect 35 to 36

connect 36 to 37

connect 37 to 38

connect 38 to 39

connect 39 to 4@

connect 2 to 27

connect 27 to 28

connect 28 to 29

connect 29 to 30

connect 30 to 31

connect 31 to 32

connect 32 to 33

connect iii to 112

connect 112 to 113

connect 113 to 114

connect 114 to 115

connect 115 to 116

connect 116 to 117

connect 117 to 9

connect 118 to 119

connect 119 to 120

connect 12@ to 121

connect 121 to 122

connect 122 to 123

connect 123 to 124

connect 124 to 13

connect 10 to 125

connect 125 to 126

connect 126 to 127

connect 127 to 128

connect 128 to 129

connect 129 to 130

connect 130 to 131

connect 14 to 132

connect 132 to 133

connect 133 to 134

connect 134 to 135

connect 135 to 136

connect 136 to 137

connect 137 to 138

connect 69 to 70

18



connect 70 to 71
connect 71 to 72
connect 72 to 73
connect 73 to 74
connect 74 to 75
connect 75 to 4
connect 76 to 77

connect 77 to 78

connect 78 to 79

connect 79 to 8@

connect 80 to 81

connect 81 to 82

connect 82 to 8

connect 3 to 55

connect 55 to 56

connect 56 to 57

connect 57 to 58

connect 58 to 59

connect 59 to 60

connect 60 to 61

connect 7 to 62

connect 62 to 63

connect 63 to 64

connect 64 to 65

connect 65 to 66

connect 66 to 67

connect 67 to 68

connect _3 to 84

connect 84 to 85

connect 85 to 86

connect 86 to 87

connect 87 to 88

connect 88 to 89

connect 89 to 16

connect 9@ to 91

connect 91 to 92

connect 92 to 93

connect 93 to 94

connect 94 to 95

connect 95 to 96

connect 96 to 12

connect 15 to 97

connect 97 to 98

connect 98 to 99

connect 99 to I00

connect i@@ to 101

connect 101 to 102

connect 102 to 103

connect II to 104

connect 104 to 105

19



i

_ r ¸ / •

connect 185 to 106

connect 186 to 107

connect 107 to 108

connect 108 to 1@9

connect 109 to i10

End Definition

i _

<i

forces and moments applied @
mz 17 50.0

displacements applied 1

tz 0.0 9,10,II,12,13,14,15,16

tx 0.@ 9,1@,11,12,13,14,15,16

ty 0.0 9,10,11,12,13,14,15,16

solve

quit

iI_ _/ i
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CHAPTER 2

CABLE IN BENDING

Chapter 1 demonstrated the use of cable in compliant systems.

In this chapter the nature of cable in bending is addressed. What

kinds of cables are used? What different wire combinations can be

used? What are the limitations? What are the other factors?

Figure i0 is an illustration of most of the cables that are

available today for compliance. (Permission has been granted to

reproduce Figure i0 from pages 240 and 241 of the En_eers

Illustrated Thesaurus, published by Chemical Publishing Co., New

York, N.Y.)

The desirable features are as follows:

(i) The wire should be preformed. In this way, fabricating

the cable is primarily laying the wires together and not just

twisting straight wires together. If the cable is not preformed,

it will spring open when it is cut and will be unmanageable for

compliance construction.

(2) For most uses, the wire should be stainless, since

stainless wire can be cleaned readily. Carbon steel wire will rust

and, in time, will fail outdoors.

(3) For some uses, the cable should be quite flexible, and

with other uses, it should be rather stiff. The use determines the

type of cable to use.

(4) It is important to recognize that both the spacing

between the holders and the construction of the cable go together

to make up the stiffness. The use calls out the stiffness desired.

(5) If the overall envelope is critical (there is little

space) the compliance should be primarily in the cable and not in

the spacing between the cable holders. Refer to Figures 1 - 9 in

Chapter 1 to see how much space is required for all six degrees of

freedom.

(6) The bending of the cable is nonlinear. One of the
reasons that it is nonlinear is because of the friction that gives

it excellent damping characteristics. The rubbing of the cable

strands causes this friction. The second reason that it is

nonlinear is because the cable center sections go into tension with

bending on the ends as the loads get higher and higher. Note

Figure ii.

Since the wire in cable is pretwisted in the form of a helix

and laid against other cables, the designer will never know what

part of what wire is touching the next wire. No two feet of a

given cable are the same. It can never touch along the entire

length because of its geometric forms. So much of the load in

bending is taken by friction that there has never been a model of
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a cable section analyzed by the finite element method. The
friction is too strong a factor. However, despite this randomness,
the response of the cable in bending is predictable and is
reproducible.

(7) In right regular lay cable, such as O0 and PP in Figure
i0, the interior wire rope core (IWRC) rotates counterclockwise,
while the exterior strands rotate clockwise. Thus in 7 x 19 cable
stranding, the center wire rope core rotates counterclockwise, and
the six exterior lays of 19 cables each rotate clockwise. The same
is true for left regular lay, but rotation is in the opposite
direction for each. (See G on Figure i0.) The damping can be
increased (particularly for vibration) by twisting the cable in the
direction of the six exterior lays. This will force the outer
cable to form a smaller circle, but it will cause the IWRC to
expand. This means that more cables will rub against other cables
if they are pretwisted, the inner layer cables against the outer
layer cables. Care must be taken not to rotate the cable too much

or the IWRC will pop out of the outer layer and damage the cable.

There are other uses when less damping is needed, and the opposite

twisting, within limits, will give the desired results.

(8) There are cases where the inner layer and the outer layer

of cable rotate in the same direction. This is called lang_lay,

illustrated as QQ and RR on Figure i0. Lang-lay can be made to be

much more limber, but too much motion will cause the entire

structure to become unstable. There are uses that will be given in
detail later where lang-lay is a better choice.

(9) A close look at Figure i0 shows where 38 different kinds

of stranding can be used. If a large amount of cable is necessary,

the wire rope company can strand it at a reasonable cost. However,

in designing the compliant mechanisms, the designer is able to get
only a few types of cables off the shelf. These cables are for

marine and aircraft use. Elevator, dredging, and lifting cables are

usually very large, while most compliance mechanisms are for

lighter loads, a maximum of 3/8 inch in diameter. The general

range is to have the cable between the sizes of 1/16 and 1/4 inch

in diameter. The strandings most often used are (a) 7 X 19,

(b) 7 X 7, (c) 6 X 37 IWRC, (d) 1 X 19, (e) 7 X 7 X 3, (f) 6 X 41

IWRC, (g) 6 X 19 IWRC, (h) 6 X 22 IWRC and (i) see JJ on Figure
i0.

Air cord is the most commonly used type of cable. This type

of cable is specified in aircraft design. It is carefully

inspected and tested from time to time to guarantee quality

control. It is not uncommon to use the same stranding, such as 7

X 19, in two different countries and find out that one country has

a much stiffer cable than the other. The strength of the wire in

the cable depends on how it is drawn and then preformed.

(i0) Different types of holders will have different effects

on the cable, which will be discussed in a later chapter.
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(ii) It is very important that the cable be held securely in

the holder. Figures ii and 12 show that the cable does not take on

a severe bending motion until it is out of the holder. Later in

this report, details of holding devices, including machined, sheet

metal, and plastic, will be given.

(12) The ratio of the diameter of the cable to the length of

the span between holders usually varies between 1/6.1 to 1/8.8.

Thus a cable of 1/4 inch in diameter can usually have the spacing

vary between 1.5 inches to 2.2 inches, depending on the load to be

handled and the amount of compliance desired. In special cases

with light loads, the spacing ratio has gone up to 1/14.5. These

uses were applied on cable between 1/16 inch and 1/4 inch in

diameter. With these spacings and the range of cables, the loads

have varied from ounces to 4,000 pounds.

Figure i0 shows the types of commercial wire rope that is

available today. Figure ii shows the normal bending of 7 X 19 wire

rope. Figure 12 shows excessive bending in commercial wire rope.

Figure 13 shows a triple stranding of cable called 7 X 7 X 3. It

is extremely flexible. Figure 14 shows cable held by plastic

holders.

i
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CLASS IV. BASIC MECHANICAL MOVEMENTS

Section 35a. Commercial Wire Ropes

In designating wire-rope construction, it is costonlary to state first, the

nunlber of strands; second, the number of wires in a strand; third, tile kind

of center or core wbether filler, hemp, wire strand or wire rope. When

wire rope remains in a fixed position (such as in cahles for suspension

bridges) or where little bending is required, a wire core is desirable. For

transmission of motion, flexibility over grooved pulleys is desirable and is

secured by thinner wires and hemp or fiber cores.

A-3 X 7; fiber center• AA-6 X 37; fiber center; two

B-6 X 7; fiber center, stranding operations.

C-7 X 7; wire center. BB-6 × 37; hemp center; three

D-6 × 8; hemp center, stranding operations.

E-6 × 13; hemp center; filler CC-6 × 24; seven hemp cen-
wire. ter$.

F-6 × 16; fiber center; filler DD-6 X 42; seven hemp cen-
wire. ters; most flexible; called

G-7 X 19; wire-strand center. "tiller" or "hand rope."
H-6 × 19; fiber center; two EE-3 × 37; wire center.

stranding operations. FF-Typical wire-rope center.

J-6 × 19; hemp center; GG-Typical hemp or fiber

Scale patent• center•

K-6 X 37; fiber center; filler HH-Typical strand center.

wire. J J-Steel wires twisted into a

L-6 X 41; wire-rope center, single strand of nineteen

M-18 X 7; nonpinning type wires.

hoisting rope. KK-Steel wires twisted into a

N-6 × 19; flexible; Scale pat- single strand of fifty-one

ent; wire-rope center, wires.

0-6 × 19; hemp center; IL-Armored wire rope; 6 ×
Warrington patent. 19; fiber center; sometimes

P-6 X 19; hemp center; filler wire center; used under

wire. severe hoisting conditions,

Q-8 x 19; hemp center; such as dredging and heavy
Scale patent, steam-shovel work.

R-8 × 19; fiber center; filler MM-Marline-covered rope; 5 X

wire. 19; hemp center; used for

S-8 X 19; hemp center; ship's rigging and hoisting

Warrington patent, service where moisture is

T-6 X 19; wire-rope center; encountered (American

filler wire. Chain and Cable Co.).

U-6 X 22; wire-rope center; NN-Stone sawing strand; three
filler wire. wires twisted together.

V-6 × 31; fiber center• OO, PP-R.egular-lay (right and left)

wire rope; wires in strands
W-8 × 19; fiber center; two twisted together in one di-

stranding operations, rection and strands twisted

X-6 X 12; one bemp center, in opposite directions.

Y-6 X 12; seven hemp ten- QQ, RR-L.ang-lay (right and left)

ters. wire rope; wires in strands

Z-6 X 37; wire-rope center; and strands twisted in the

_'ale patent, same direction

A B C D E F

G H J K L M

N 0 P Q R S

T U v W x Y

Z AA BB CC DD EE

FF GG HH JJ KK LL

MM

t,,IN

O0 Pp

0.0, RR

Figure i0. Types of cable used in bending.
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CHAPTER 3

ONE-, TWO-, AND THREE-DEGREE-OF-FREEDOM SYSTEMS

The Three-Degree-of-Freedom System

The three-degree-of-freedom system, as built, is shown in

Figure 15. There is translation in the Z axis and rotation about
the X or Y axis. The use at Goddard Space Flight Center is for a

Vibration system that would fit the end of a 450,000-pound

centrifuge. The center moving weight is a 10,000-pound magnesium

casting, shown in Figure 15. Test models of the system are shown

in Figures 16 and 17. Figure 18 shows a patent drawing of the

system. The center moving weight is a 10,000-pound magnesium

casting, shown in the figure as 12. The actuators that drive the

shaker are 16. The cables allow only motion in the Z axis and

rotation about the X and Y axes are 20. There are sixteen cables

1 1/4 inches in diameter, and each cable is prestressed to 30,000

pounds. The total preload on all of the cables is 480,000 pounds.

One end of the cables is mounted to the vibrating 10,000-pound mass

(26, Figure 18). The other ends of the cables are mounted to the

outside frame (i0, Figure 18). There is a table (14) that vibrates

back and forth mounted on top of this assembly (21). Thus it is

possible with four actuators to translate in the Z and the X

direction and to rotate about the X and the Y axes. The cables

allow these motions, but they keep out all the other vibration and

translation loads that would be detrimental to the operation of the

system.

Figure 15 is a picture of the system without the top table.

Figure 16 shows a model of the final mechanism that was

necessary to demonstrate the capability of the system to take the

vibration of the upper round table and keep the system stable at

the same time. During these tests, it was clearly demonstrated

that the ends of the cable had to be held securely and not allowed

to rotate. All of the motion had to be in the bending of the cable

and not in the rotation of the ends. This same principle is used

in all cable compliance systems today.

Figure 17 shows the same model of the three-degree-of-freedom

system mounted on the end of a vibration table. This test was

performed to demonstrate that any vibration that would cause the

frame to vibrate would not affect the alignment and compliance of

the system. These tests also demonstrated that it was necessary to

hold the ends of the cable so that they could not rotate. Thus all

of the motion was taken in the bending of the cable. This motion

would also dampen the external forces, since cable in bending

causes many strands to rub against each other, and friction damping

results. The higher the amplitude, the more the rubbing and the

damping increases.

Figure 19 is a top view of the assembly. The cables (34) are

firmly attached to the magnesium moving part (12). Notice the 4340
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steel machined parts, which hold the cables in place and keep them

from rotating. The 480,000 pounds applied by the cable are taken

out by the external frame, causing the unusually high bending

moment. The external frames (94) were needed to take the extra
moment.

/__i!̧ •

In the bottom part of Figure 19 is an exaggerated view of what

the cables look like during vibration input. Note that this

configuration also allows for a certain amount of rotation about

the X and Y axes. The dynamic principle of the system was

straightforward, but the stresses were high, and this caused many

difficulties. The tooling of the welding and the welding were so

difficult that the Lincoln Welding Society gave this design an

award for being one of the top weldments of the year. The assembly

and testing of the parts was very difficult. Large forces applied

to a magnesium casting caused creep, and that had to be handled by

special design techniques. If the frame were used to hold a pile

driver or a pneumatic hammer, then the problem would be very simple
and the system easy to apply.

Figure 20 shows the complex assembly to a magnesium block.

Eight steel bars go completely through the magnesium casting to

keep the compression forces from causing stress concentrations on
the magnesium.

/

J

r

Figure 21 shows the outboard end of the cable attachments.

Note the adjustment screws (80) that were installed to pull up on

the cables if they started to creep. Over a period of several

years, the cables moved less than .020 inch, and it was never

necessary to use the adjustment screws. In a less complex system,
this means that the cables are installed once without further
attention.

Figure 22 is a sketch of the Launch Phase Simulator

centrifuge. This centrifuge weighs 450,000 pounds, and it has been

rotated up to 50 G's, or the tip rotates at 200 miles an hour.

These high forces must be taken by the three-degree-of-freedom

cable system. Special features were added for this difficult

problem. The system was designed so that the cables would have to

take 30 G's on the centrifuge and, at the same time, act as a

compliant system. This it did very well. This feature shows, in
a simple pneumatic hammer problem, that the cables could take the

weight of a person who leans on the frame, which remains rigid

while the bit of the chipper bangs its way into the concrete. One

of these has been made, and it demonstrates this ability quite
well.

One-Degree-of-Freedom System

A one-degree-of-freedom system is the same as a three-degree-

of-freedom system with one addition. On Figure 23 is shown a

sketch of the cables mounted to the top and bottom of the moving
structure. This prevents rotation about the X and the Z axes. The

lower layer of cables prevents the rotation of the mass. The

3O
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rotational motion about the Z axis is prevented by placing the

cables in the positions as indicated in Figure 19.

Two-Degree-of-Freedom System

This system is sketched on Figure 24. The structure can now

rotate about the X axis, but not about the Y axis. The lower

cables were eliminated in the Y plane. Thus the two degrees of

freedom are translated in the Z axis and rotated about the X axis.

Forces Necessary to Operate the System

Cable Length = 36 inches.

Cable Diameter = 1/4 inch.

Z Cable Motion = 1 inch.

Change in cable length to go 1 inch in the Z direction = .013

inch.

Deflection = PL/AE.

E = 20,000,000.

L = 36.

A = (for i/4-inch diameter cable) .0329.

P = Deflection X A X E/L = 247 pounds.

Breaking strength of i/4-inch cable = 7,000 pounds.

Angle for deflection of 1 inch = 1.59 degrees.

Force necessary to move cable up 1 inch = 6.8 pounds.

These calculations are based on the assumption that the

modulus of elasticity of cable in tension is 20,000,000 pounds per

square inch (psi). It is further assumed that the cable is in pure

tension. There is bending on the ends of the cable, but most of

the cable is in pure tension, particularly with a motion of only 1

inch. Another assumption is that the system is linear. Cable is

not linear, but in these low stress ranges, calculations can be

used assuming the cable analysis to be linear.

Limitations on the System

The pictures show a three-degree-of-freedom system that only

had to move 1 inch. Large motions in the Z direction could cause

major problems. However, the maximum input for most vibration

cases is no more than plus or minus 1 inch. Further, it is noted

that a rigid frame is necessary to hold the cables in place. This

requires quite a bit of weight. Also notice that for the system to

operate in the ranges indicated, a large Space is required. In the

design of the Goddard Space Flight Center 1972 patent, the weight

and size were not excessive. If weight is a problem, then the

motion of the outside ring must be taken into account.
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Figure 18. Patent drawing of assembly.
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Figure 20. Cable end fixity.
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CHAPTER 4

CABLE CONTROL SYSTEMS

Technical Field

This chapter describes a joystick invention that implements

cable for increasing control and reducing fatigue of the operator.

A feedback loop to the operator's hand is an option that makes the

joystick more "user-friendly."

Introduction - Background Art

There are many hand-operated controls known as joysticks

available commercially. Joysticks have numerous applications in

the electric control of moving bodies such as cranes, small

vehicles, remote handling apparatus, robots, and aircraft. The

joystick shaft has a neutral position that is perpendicular to the

plane of the switches or contacts and is moveable about the X and
Y axes to control the device to which it is attached. The joystick

shaft pivots, and its lower end makes contact with switches that

send appropriate signals to the machine to be controlled. By hand

manipulation of the joystick, the operator selectively causes a

specific contact to complete a circuit, which, in turn, activates

a specific operational control (i.e., left turns, right turns,

reverse movement, forward movement, etc.) Some joysticks have

variable response; the harder or farther one pushes, the more

response is achieved. Most joysticks also have a means for

returning to a neutral position, such as a spring or other
resilient means. Their limitations are that they are either too

"hard" or too "linear." That is, the commercially available

joysticks tend to move either too little or too much in response to

operator input. The operator also has no sensory feedback from the

joystick that would indicate how hard or fast the machine is

moving. Because of this, joysticks do not work well with the

natural action of the hand, the brain, and the body's feedback

characteristics.

Statement of the Invention

This invention is a joystick with nonlinear response. The

handle deflection is not proportional to the amount of force input.

The mechanism gets stiffer with increasing force. This provides

superior control and feedback to the operator, since it reflects

the natural action of the operator's hand, his brain, and the

feedback nature of man. In this way, it feels better to the user

and thus increases his control and cuts down on his fatigue.

The foregoing benefits are achieved by the User-Friendly

Joystick (Figure 25). It is composed of a lower U bracket and an

upper U bracket connected with cables in the standard compliant

configuration. The cable segments and their configuration are

critical for establishing the compliant characteristics of the

joystick. The compliance may be modified in a number of ways: by
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varying cable segment lengths and stranding; by pretwisting the
cable; and by varying parameters such as the spacing of the cable
sets, the number of cable sets, the cable diameter, the cable
material, and the angle between cable segments.

As the operator moves the joystick handle, the cable compliant
joint initially provides a low reaction force, but as the joystick
handle is moved farther in any direction, the reaction force
becomes nonlinearly greater. The cables are virtually
indestructible and may be bent to angles over 90 ° . The joystick
may be calibrated for use in the operator's range of comfort.

Internal vibrators within the knob on the joystick handle
provide feedback to the operator. When a machine controlled by the
joystick moves, the inertial and reaction forces are measured by a
force sensor. The operator will then know by tactile feedback
through the hand when the target has been contacted, in what
position the target has been contacted, and the magnitude of the
force exerted on the target.

A detailed discussion of the cables, swaging, four cable set-
up configurations, configuration angles, and the degrees of freedom
available can be found in Chapters 1 and 2, plus additional
references later in this report.

The compliant joystick may be used to modify hard or stiff
response joysticks to make them more user-friendly. A drawing of
this control system is shown in Figure 26. The upper left sketch
shows a top view of the cable angles and the cables in one
quadrant. The lower left sketch shows the inverted upper U frame,
which holds the handle and the cables. The lower right sketch
shows the lower U frame, which is also inverted to hold the hard

joystick. The base of the stiff joystick is mounted to a stable
platform.

In many cases, it is desirable to add compliance to a stiff

joystick to make it user-friendly and less tiring. Further it

enhances brain-to-hand coordination with kinesthetic movement,

which allows smoother and more accurate control of the stiff
joystick.

In the previous application, a stiff joystick was made more

compliant. Figure 27 shows the control system of a joystick

mounted directly to the hard surface. The handle motions are

converted to signals by linear variable-displacement transformers

(LVDTs). In this application, the joystick may be used to control

motion in all six degrees of freedom, not, for example, just the X
and Y axes.

Figure 27 is a vertical view of six LVDTs. This particular

arrangement will provide positional information in six degrees of

freedom. When mounted between the upper and lower U bracket, the
LVDTs will act as input devices when the user moves the handle of

the joystick. The upper U bracket and the lower U bracket are
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wider in order to accommodate the six LVDTs. The LVDTs are
inclined at an angle of 30 degrees as shown. Figure 27 shows a top
view of the lower U bracket with six LVDT mounts positioned so as
to place the LVDTs in their proper orientation. Matrix
transformation algorithms convert LVDT signals into six-degree-of-
freedom commands for either position, velocity, or acceleration.

Figure 28 shows a joystick in operation, the upper left-hand
picture shows the joystick in the neutral position. The upper
right-hand picture shows the joystick moved to the left. The lower
left-hand picture shows the joystick rotated forward. The lower
right-hand picture shows the joystick rotated sideways.

Figure 29 shows four possible configurations. The upper left-
hand sketch shows a typical hand control system with compliance
added. The upper right-hand sketch shows the lowering of the knob
for better horizontal control. The lower left-hand sketch shows
the compliance with LVDT controls. The lower right-hand sketch
shows the compliance with LVDT control and feedback to the hand to
indicate that the item controlled is touching the target.

Summary

Described above is a joystick that is superior in all aspects
to current commercially available joysticks. Thus, as the operator
grabs the knob (2) and moves the handle (25), the cable compliant
joint shown in Figure 25 initially provides a low reaction force,
but as the handle is moved farther in any direction, the reaction
force provided by the compliant joint becomes nonlinearly greater
until a limit is reached, either by providing a "stop" or by
reaching the limit of the bending of the cables in the compliant
joint itself. It is also possible to provide internal vibrators
within the knob in Figure 25, to measure the direction and
intensity with which a robot controlled by the knob moves into the
target. The operator will then know when the target has been
contacted, in what position the target has been contacted, and the
magnitude of force exerted on the target.
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Figure 28. Joystick motions.

47

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH



,t+,/_x\,. itr/"_\x\////k\\_. _//7

TYPICAL HARD CONTROL

CABLE COMPLIANCE ADDED

_L
7_,,.7,..T_C.

GOOD HORIZONTAL CONTROL

LVDT CONTROL

Figure 29. Four types

II_ill
ll!_i

/; Jl_/,_............................_.j_:__...................
_ .........__ ...... ,_-___,._-7< ,._-......
I I/ ; / '_ ', I/ l I
! Ii; , , r/ I

4;," ',,",,,,,';71

LVDT CONTROL

HAND FEEDBACK

of control.

48



CHAPTER 5

COMPLIANCE FOR A 200-POUND TO 800-POUND TARGET

The control systems listed in Chapter 4, "Cable Control

Systems," used cable 1/16 inch in diameter. When these systems

were completed, an immediate need came for using compliance on a

200-pound target. Figure 30 is a sketch of the aluminum frame used
to hold the cables and mount to the robot. The angles are 7 inches

by 7 inches by 1/2 inch, with the width of one leg cut back to 4

inches. On the top are the two angles mounted to an intermediary

plate, which is bolted to the mounting plate. The lower angles are

mounted to a frame, which is bolted to the other mounting plate.

The 200-pound system uses 16 cables. Figure 30 shows 64 cables to

hold 800 pounds.

Figure 31 is a sketch with more details. The sixteen cables

are shown. The 7 X 4 X i/2-inch angles are shown. The top and

bottom mounting plates are shown. An intermediate plate is shown

mounted to the bottom mounting plate. This plate holds six

monoballs formed into a "Maltese" cross. The LVDT transducer,

which measures deflections down to .001 inch, is shown mounted in

the monoball. An adapter fitting is mounted to the other end of

the transducer, which, in turn, screws into a tie rod end. The tie

rod end is screwed into an intermediate plate on top. This

intermediate plate is bolted to the upper mounting plate.

The 7 X 4 X i/2-inch angles have slots on the sides and on the

bottom so that the angles can be moved back and forth. This motion

changes the characteristics of the cable. When the angles are

moved inward, the mechanism has a maximum compliance. When the

angles are moved outward, the mechanism has a maximum stiffness.
The sketch shows the cables moved inward for moderate compliance.

Figure 32 shows the lower intermediate plate that holds the

six monoballs used to form a Maltese cross. The upper right

section of the sketch shows the upper intermediate plate. There

are six tapped holes that hold the tie rod ends.

Figure 33 shows the Maltese cross of six LVDT transducers.

The output from these transducers can record six-degree-of-freedom

motion, which includes translation in the X, Y, and Z axes.

Further, they can measure rotation about the X, Y, and Z axes. In

this way, the exact rotation and translation between robot and the

end effector are always known.

Also shown are the angles with the cable clamps holding the

cable to the angles. Further, the corner angles and the clamps

used to hold the cable to the angles are shown. In this particular

configuration the angles are moved out to give a stiff compliance

to the system.

Figure 34 shows the cable stiffness adjustment in the vertical

plane. The slots in the angles allow the cable to move up and
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down. When the upper cables (as shown) are moved up while the

lower cables (as shown) are moved down, the compliance is stiff in

the vertical direction. By reversing this motion, the cables are

more compliant in that vertical axis. The upper left part of

Figure 34 shows the slots on the bottom of the angle, which allow

the angles to move in and out. The cables are moved out for

maximum stiffness. The upper right sketch on Figure 34 is a
drawing of the cable holder.

Figure 35 shows the actual installation of the compliant

system from parts already shown in the previous sketches. The

upper mounting plate is mounted to the robot on top. There are 16

cables used to hold 200 pounds. This amounts to 12 1/2 pounds per

cable. The spacing is approximately 1 3/4 inches. The cable used

is i/4-inch 7 X 19 stainless steel air cord. The two upper angles

are bolted to the upper mounting plate. The two lower 7 X 4 X 4 X

i/2-inch angles are bolted to the lower mounting plate. This plate

holds a force transducer, which, in turn, holds the grippers (end

effectors) of the robot. Notice the slots in the 7 X 4 X 4 X 1/2-

inch angles that allow for stiffness adjustment. Another feature

of this type of system is that the stiffness can be adjusted

without taking the system apart. The upper and lower angles can

also be adjusted without taking the system apart. The cable

holders are mounted to the inside of the angles. They could have

been mounted to the outside of the angle, but this would have

required a larger corner angle and would have made the system
approximately 4 inches wider.

Figure 36 shows this same system mounted to a robotic gantry

with 64 cables capable of lifting 800 pounds. This gives the same

12 1/2 pounds per cable. The spacing is approximately 1 3/4

inches. The robot is in the upper left. The cable compliance is

mounted directly under it. The end effector is a rotary clamping
mechanism that meets with its mating mechanism shown in the lower

right. The overall purpose is to operate the gantry by computer.

With compliance, the matching attachment need not be exact, since

the cable allows for misalignment in the six degrees of freedom.

Figure 37 shows the robot coming down to meet the target.

Figure 38 shows the end effector meeting the target at an

angle of approximately 5 degrees. This angle does not ordinarily
occur, but it is made large to illustrate the compliance of cable.

In this case, the LVDTs are not needed. An additional element is

a 3/4-inch threaded rod that goes from one angle to the other.

This rod is used to help control the moment on the angles when the

800 pounds is applied. Further, this angle makes adjustment after

installation easier and stronger, particularly in the stiff mode.

In this particular installation, it was necessary to change the

adjustment to meet the requirements of the robotic laboratory.

Figure 39 shows the robot coming down to meet the target while

the cables bend to conform to the misalignment. There is a

noticeable different angle between the upper mounting plate and the

5O



/ lower mounting plate. As stated previously, it was approximately

5 degrees. The cables are bent to conform to this large angular

misalignment. The lower clamping mechanism is rotated, and the

robot is firmly attached to the target, which can be lifted in this

manner. However, in practical usage, the operator notices the

large angle and rotates the robot arm to take care of some of this

misalignment.

These previous pictures and sketches demonstrate the ability

of compliance to adjust itself to all six degrees of freedom. In

this particular case, the difficulty was not so much misalignment

in the X, Y, and Z plane but rotation about the X and Y axes.

There is a smaller need for the adjustment of rotation about the Z

axis.

o

/
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Figure 31. LVDT installation.
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Figure 35. Compliance installed on robot.
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Figure 36. Gantry robot with compliance.
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Figure 37. Gantry
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Figure 38. Gantry touches target.
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Figure 39. Cable adjusts to misalignment.
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CHAPTER 6

VARIABLE COMPLIANCE

Many times the robot has to make a contact with the target and

grasp it to perform a function when the robot may not know the

exact position of the target. However, a mechanism with large

compliance on the end of the robot will enable it to grasp the

target. Then when the robot has to take the target and put it into

a precise position, it is desirable to have the cables on the

compliance mechanism tighten up and become linear and accurate. At

the same time, the compliant mechanism with limber maximum

compliance may not be able to operate with the full force necessary

to do the job. In this case the cables can be made to be very

compliant to grasp the tool but not in a position to handle heavy

weights and forces. With variable compliance, it is possible to

approach the target with much compliance, but to stiffen up (with

little compliance) when a precise task is to be performed.

Figure 40 shows such a variable compliance mechanism. Note
the 12-inch ruler in the center of the picture. There are 320

cables of i/4-inch 7 X 19 stainless steel air cord. The cables in

the bottom and top of the picture are pushed in and quite limber.

The cables on the side are in the neutral position. The circular

rings are not made for the compliance mechanism, but they are added
to hold the LVDTs in the form of a Maltese cross, explained

previously. This offers another desirable function. The LVDT

signals go to a computer where they always know the angular and

rotational positions of both the robot arm and the target. The

LVDTs can then show the computer how to line up the compliance

mechanism so that it will be in the same line as the target even if

that line is not perfect when the arm first meets the target.

Figure 41 shows the top view of the same variable compliance

mechanism. This picture shows the complete syn_etry of the cable

positions in order to get a six-degree-of-freedom system for

contact and control.

Figure 42 shows the cable holder in the center with the cables
attached to both ends. The cable holder moves up and down to

become soft or hard. It is moved by the ball screw shown in the

center of the picture. The threaded rods sticking up are used to

keep the cable from moving too far in case of overload.

Figure 43 shows the complete drive mechanism with the cable

attached. This compliance mechanism consists of a top plate and a

bottom plate. In this view only the bottom plate is shown. The

upper plate is exactly the same but rotated 90 degrees.

Figure 44 shows the drive mechanism without the cable.

Figure 45 shows a close-up view of the drive mechanism with

the ball screw.

PRECEDING PAGE BLANK NOT FILME_D
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Figure 46 shows a close-up view of the cable assembled on the
corner angle.

Figure 47 shows the assembly drawing of one half of the

compliance mechanism. Marked in particular are the cable support

brackets, the ball nuts, the ball screws, the worm drive, the

flanged bearing, and the shaft support bearing.

Figure 48 shows a computer-simulated model of the position of

the cables as they are pushed out and made stiff. This means that

the angle support bracket is moved outward on all four sides to a

point where the cable is stretched and bent before the load is
applied.

Figure 49 shows an applied load upward. The upper cables that

have been previously stretched out are now straight. To allow this

motion, the cables on the other side must be stretched farther.

This limits the motion of the upper cables, and the cable

compliance mechanism is stiff. It is possible to have the lower

cables stretched out so far that the upper cables move only
slightly.

Figure 50 shows the cables moved inward before loading. They

are quite limber in this form, and there is quite a bit of

compliance. This is a characteristic of cable in this form. The

ball screws turn and move the end cable holders inward.

Figure 51 shows the deflected cables of Figure 50 with a

vertical force. This force has the same value as the force in

Figure 49. There is a completely different pattern of deflection.

The cables move much farther than those in the previous example of

Figure 49. This brings the compliant mechanism to its maximum

compliance. It moves in any direction very easily. It is good to

note here that the motion of any cable on the compliant mechanism

affects every other cable and either abets or hinders the motion
attempted.

Figure 52 shows a static hysteresis test on the compliance

mechanism when the cables are in the neutral position. A positive

load of 5,000 pounds and a negative load of 4,000 pounds were

applied. The loads were applied in 1,000-pound increments. The

friction of the rubbing wires while bending causes this damping.

It should be noted that the response has heavy damping and is non-

linear, but at the same time, it is reproducible. Thus, there is
no yielding of the cable.

Figure 53 shows the loading of the compliance mechanism as the

cable is initially positioned inward and in the most limber

configuration. These hysteresis curves are much weaker than those

in the previous tests. With 2,000 pounds, the compliance mechanism

moved approximately 1.6 inches. In the previous example of Figure

52, when the cables were in the neutral position, the mechanism

moved no more that .55 inches with 2,000 pounds. This soft

compliance is very good for mating of the target for the first



time, since it takes very little force to line up two items.

Figure 54 shows the hysteresis curves of the cable when they
are previously moved outward. The hysteresis is almost gone, and
it acts as a linear system with a slight amount of damping. Note
that the deflection is approximately .85 with a load of 4,000
pounds, while the neutral position deflects 1.4 inches with a
4,000-pound load. Within the accuracy of the test, this compliance
for the stiff mechanism is linear and reproducible. It is
understood that it is possible, with a much larger preload, that
the cables would be nonlinear, both because of damping and also
because the cables change their characteristics when they are bent
beyond a certain point. This is a desirable feature because a
severe overload would not break the system, but it would change the
hysteresis of the cables. There would be some yielding of the
cables near the holders, but they would not break.

Summary

It is desirable to have a compliance mechanism between the
robot and the target to make a coupling of the two, even if they
are severely misaligned in the six degrees of freedom. It is not
desirable to have a largely compliant mechanism act as the robot is
moving and performing its task with the target. Thus, with one
compliant mechanism, it is possible to have a variable compliant
system that would accomplish both ends. While the system is built
for a 4,000-pound target, it is important to note that this same
principle can be applied to a much smaller compliance mechanism.
Usually in the small devices, the mechanism has two positions--stiff
and limber. With the motor used in the 4,000-pound compliance

mechanism, it is possible to get over many positions.

It must be further noticed that the system illustrated is

nothing but eight 4-bar links with two solid links and two cable

links. They are balanced and can be reproducible and predicted.

There are many other cable devices that do not have the same

characteristics, largely because the cable is curved, which causes

a certain amount of unstranding that can lead to many forms of

nonlinearity. This report is centered around this type of system

that is adapted to many sizes and loads and many forms of

compliance.
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Figure 40. Perspective view of compliance mechanism.
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Figure 41. Top view of compliance mechanism.
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Figure 42. Cable holder, cable, and ball screw.
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Figure 43. Drive mechanism and cable.

Figure 44. Drive mechanism.
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Figure 45. Drive mechanism with cables.
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Figure 46. Cable assembly.
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Figure 47. Drawing of assembly.
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Figure 48. A,B,C,D,E,F,G,H extended before external load applied.
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CHAPTER 7

CABLE HOLDING METHODS FOR MASS-PRODUCED

CABLE COMPLIANT MECHANISMS

This chapter details the recent advances in methods for

holding stainless steel cable in mass-produced cable compliant

mechanisms (CCMs). The goal in these investigations has been to

devise fast, inexpensive, and secure methods to provide cable end

fixity. Two types of fastening methods have been investigated:

polymer and formed metal holders. These processes can be used with

prototypes as well.

Formed Metal Holders

Metal holders lend themselves most readily to mass production

because they are simple to form, and the forming technology is very

mature. Two examples of completed CCMs are shown in Figures 55 and

56. These hand-made prototypes took about 1 day to build. Mass

production time is estimated to be between 5 and 15 seconds.

The forming process is illustrated in Figure 57. In Step i,

the metal is formed around a mandrel. In Step 2, a dowel mandrel

is inserted and the metal is further bent into the final

configuration. In Step 3, the cable is passed through the hole.

In Step 4, a piece of metal is forced between the cables. The

parts are identified as follows:(72) is the metal holder; (74) and

(76) are the cables; (80) represents the first bend; (81)

represents the metal forced between the cables; and (82) is a spot

weld, solder, or braze used to hold the metal in place. Figure 58

is a sketch of the final product. The center may be left open,

depending upon the use. Figure 59 shows the same techniques

applied to the corners. A punch and dye tool set can assemble this

unit in a matter of seconds. Figure 60 shows a view (front and

back) of the assembly after the manufacturing process.

The hand-made metal prototypes were made from sheet copper.

Various thicknesses were tested. The optimum thickness was found

that gave the best compromise between stiffness and forming ability

for the size cable used. For the 3/32-inch and i/8-inch cables,

the copper could vary from 1/32 inch to 1/16 inch. The metal plate

could be 1/8 inch thick.

Other metals found suitable for mass-produced CCMs generally

had elongation of 30% to 50% and yield strengths of i0 thousand

pounds per square inch (ksi) or better. These materials include

aluminum alloys (annealed state) and 303 series stainless steel.

To stack more than two cables together, another fabrication step

had to be added to join cable pair holders, shims and sheet metal

acted as buffers between two or more rows of cable.

Not shown are the forming tools necessary for this type of

operation. Preforming pliers can be used for prototypes, while in

production, a dye set can be used. The forming process is separate
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from the assembly process.

Polymer Cable Holders

Figure 61 is a picture of Polyamide Splint (white) at both

ends with a fiberglass mould (clear) in the center. The splints

are heated and formed around the cable. The fiberglass uses the
heat of its own mixing to form around the cable.

Figure 62 is a combination of four elements. They are listed

from left to right as Devcon (2-ton epoxy), 3M (2216 epoxy),
Propylux and Co-propylux.

Figure 63 is a picture of Polymend Splint wrapped around
i/4-inch cable.

Figure 64 is a picture of Propylux and Co-propylux wrapped
around a piece of i/4-inch cable.

Figure 65 is epoxy formed in a mould.

Figure 66 is an embedded metal gripper that is molded in the

center of the cable to prevent rotation after assembly.

Figure 67 is a fiber polymer that could be put together in
layers.

Corners offer a difficulty with plastic holders. They can be

made flat and bolted together, or a high strength plastic that has

a moderate viscosity could hold the cable. We have not extended

our work into this area as yet.
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Figure 55. Cable metal holder - 3/32.
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Figure 56. Cable metal holder - 1/8.
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Figure 59. Corner cable clamping.
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Figure 60. Cable assembly techniques.
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Figure 61. Polymead splint (white). Fiberglass mold (clear).

Figure 62.

co-propylux.
Devcon 2-ton epoxy 3M (2216 epoxy) - propylux -
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Figure 63. Polymend splint.

Figure 64. Propylux and co-propylux.
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Figure 65. Epoxy in mold.

Figure 66. Embedded metal prevents rotation.
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Figure 67. Fiber polymer.
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CHAPTER 8

COMPLIANT KNEE JOINT

This invention relates to a compliant joint for prosthetic and

robotic devices that permits rotational movement in three different

planes and, more specifically, to a joint that provides for the

controlled use of cable segments coupled into a common mounting

joint.

In the field of robotic devices, there is a need for joint

structures that connect robotic limbs or components that will

permit precision-controlled rotation in three planes. This is also

a desirable feature for joint prosthesis for replacing a diseased

or damaged joint between human body skeletal members where the

joint prothesis should simulate the durable and resilient

characteristics of the joint it replaces, as well as duplicate the

rotational movement and flexibility of the replaced joint.

There are numerous prior art devices that disclose protheses

for the replacement of knee, elbow, hip, and knuckle joints, but

problems have been encountered with each type of design. Usually

the joint protheses have hinging elements formed with metal-to-

metal or metal-to-plastic bearing elements that provide

insufficient resiliency or flexibility at the hinging element to

cushion and absorb impact loads or lateral and compressive loads

that are applied to the joint in everyday use. Thus, the joints

eventually fail and must be replaced.

To combat the problem of insufficient resiliency or

flexibility, some devices have been proposed in which the prothesis

is formed almost entirely of a flexible member such as an

elastomer. Problems have occurred here, since shear forces, over

a period of time, cause the elastomer to tear, resulting in the

eventual failure of the prothesis. Also, if the elastomer is too

flexible or becomes more flexible because of prolonged use, the

skeletal components have sometimes become dislocated, resulting in

failure.

For robotic devices, there are other problems. Conventional

robot arms are built up from a number of elements and joints,

which, besides the tool and the load, also must support the

equipment for the motion and power generation for the separate

elements. This equipment usually comprises pneumatic or hydraulic

cylinders, electric motors, etc., which means that the elements and

joints must be relatively coarse or h_avy in order to support the

equipment. Thus the robot will have a bulky shape and

comparatively large external dimensions, which will reduce the

flexibility of the robot arm.

There are robotic couplings available that use cable.

However, there do not appear to be any in the prior art that

disclose the controlled use of the cable to allow precise and

predetermined control of the compliance flexibility and rotational
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movements. This applies to the robotic joint in three planes, as

well as to its ability to absorb heavy loads.

The following are features of the rotational compliant joint:

(i) The joint must be flexible and compliant.

(2) The joint should have a high level of damping.

(3) The robotic application shall have a high load capacity.

(4) The rotation can be in all three planes, but should favor
one.

(5) This joint should be very durable and inexpensive.

(6) It is a goal of this invention to provide a compliant

joint prosthesis that can be used to replace a diseased

or damaged joint for human body skeletal members and that

has the capability of simulating the movement and

flexibility of the replaced body joint.

Figure 68 shows the cable knee joint rotating on the bearing.

Figure 69 shows the cable knee joint coming to a stop on the

bearing. It is at this point that the cable begins to torque up

until it is very stiff and stops. This requires only a few degrees
of motion.

A Brief Review of the Descriptive Drawings

Figure 70 is a pictorial perspective view of the compliant

joint. Figure 71 is an exploded view of the knee joint as shown in

Figure 70. Figure 72 shows a cross-sectional view along III-III as

shown in Figures 70 and 71. Figure 72 shows a cross-sectional view

along IV-IV as shown in Figures 70 and 71.

!

The compliant joint is shown in Figure 70 and in the exploded

view in Figure 71. A centerpiece (12) is preferably shown in the

center of the compliant joint (i0). The centerpiece is shown as a

cubit-shaped element in the embodiment shown in Figures 70 and 71;

however, it could be spherical or take other geometric shapes,

depending upon its usage.

Extending through the centerpiece are cables (14 and 16). The

cables pass through the centerpiece at substantially right angles

to one another. The cables shown are preferably metal such as

stainless steel or any metal that can be spun into cable. The

cable can be regular-lay cable or lang-lay cable; however, it is

important that the cables be independent wire rope core (IWRC).

The ends of the cable (14) are joined to a U-shaped bracket (18) by

swaging the ends of the cable to an end swage (22). The ends of

the other cable (16) are joined first to bearings (24) using a

bearing clamp (26), or they can be joined to the bearing by

swaging. The bearing is, in turn, mounted into a second U-shaped
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bracket (20). The bearing has a stop arm (28) or rod-like member

positioned so that the stop arm can rotate back and forth between

stops (30 and 31). An end grip (32) extends from the outer surface

of the U-shaped bracket, and a second end grip (34) extends from
the outer surface of another U-shaped bracket (18). The end grips

are shown broadened out so as to connect to a flat surface such as

a robotic machine element, but they could be smaller and round-

shaped so that the end grips could connect to the center of a bone

or a knee or elbow joint, as will be discussed later.

Figure 71 illustrates an exploded view of the compliant joint

(i0) that can be used for a knuckle, knee, hip, or elbow joint.

This joint is used where free rotation is needed through certain

degrees of motion in one plane but, at the same time, there is

compliance in all degrees of rotation. This allows the joint to

absorb large loads in any of the three-dimensional planes and, at

the same time, have the ability to demonstrate or possess the

characteristic of easy motion and compliance in the other planes.

The free motion is shown as the region of rotation or angle Theta

(8), which shows the range of movement or rotation for the arm,
which is allowed to rotate back and forth between stops. The

rotation here is described as free rotation because the arm is

attached to a bearing (24), which reduces a substantial amount of

the resistance caused by friction. Angles Alpha (_) and Beta (8),

however, are representative of the region of compliant motion or

rotation that is allowed because of this unique arrangement of

cables. After the arm rotates through its maximum range of free

movement and comes into contact with a stop (30 or 31, depending

upon the direction of rotation), the end grip (32) can yet rotate

farther through angle _ because of the compliant characteristic of

cable (16). This movement is much more damped than is the movement

that occurs during angle 8, and the degree of compliance or damping

can be controlled or varied by varying cable segment lengths, cable

diameter, and cable stranding; by pretwisting the cable; and/or by

changing the cable material.

The end grip (34), which is mounted to the U-shaped bracket

(18), rotates through angle _. Since one cable (14) is not mounted

to a bearing system such as bearing (24), there is no free motion

or angle of free rotation for the end grip (34). Thus, only

compliant movement is demonstrated or allowed for that end grip, as

shown in this configuration, because it simulates the movement in

a knee, hip, elbow, or finger joint, where free movement is desired

only in one plane. Yet some degree of compliance is required to

simulate the flexibility of a human joint in the other two planes.

Figure 72, top, shows a cross-sectional view III-III of

Figures 70 and 71, illustrating in more detail how cables (14 and

16) are connected to the centerpiece and how one cable (14) is

connected to a mounting bracket (18) by means of an end swage (22).

The swage material could be soft silver, gold, platinum, or copper,

depending upon the use of the compliant joint and the budget of the
manufacturer. It should be noted that copper was preferred for

this design. The same swage joint could be used for connecting the
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cable (14) and connecting mounting bracket (18), either swaged

individually or together. It should be noted that the swaging

techniques used for these joints are not those commonly used in

cable fittings, such as those used for slings and ship rigging.

The cables used for the compliant joint are subjected to less force

because they are not used in applications in tension but rather are

used in applications in shear and rotation. The cable itself can

be regular-lay IWRC or lang-lay IWRC. The cable in the single

strand can be regular-lay going to the right side of the

centerpiece and lang-lay going to the left side of the centerpiece;

however, in this case, two additional swages would be required at

the junction (40). The centerpiece would have to be adapted for

this center swage connection. The junction shows a swage of cable

(14, topside) and cable (16, bottom side) to prevent rotation or

slippage of said cables. This center swage could be performed with

a pin or a set screw (not shown) or by making the centerpiece out

of steel, driving a piece of copper through the hole (38) to hold
the cable in place. The preferred solution would be to thread the

hole and use a set screw to swage the cable. Note that the hole of

the centerpiece is the junction at which the cable segments would

meet. If the center of rotation of the cable segments going to the

left and right of the junction cannot be in the same direction,

then four pieces of cable segments would be required, and

accordingly, four swage connections would be necessary.

On the bottom of Figure 72 is shown a cross-sectional view IV-

IV of Figures 70 and 71, illustrating in more detail how the cables

are connected to the centerpiece and how one cable (16) is

connected to the bearings (24) and the mounting bracket (20). This

view shows the bearing and the rotational arm and rotational stops

for the rotational arm. There are two bearings, two rotational

arms, and four rotational stops shown in Figure 72. It should be

noted that it is possible to have only one bearing located at one

end of a cable (16) and a swage (with no bearing) at the opposite
end of that cable for special kinds of hinge action.

The bearings can be of various types such as ball bearings,

roller bearings, or friction bearings; however, the bearing shown

in Figure 72 is aball bearing, which has been tested successfully.

The type of bearing required will be dictated by the use of the

compliant joint, whether it be a human skeletal body joint or joint

for robotic applications. The bearing can be captured by the same

material (copper, gold, silver, or platinum) that is used to swage

the cable. If copper is used, then the copper is first swaged to

the cable and the end is left free to move up. Then the cable (16)
and the centerpiece are positioned in place, and the same copper is

used to hold the assembly to the bearing. The other end of the

bearing can be attached to the mounting bracket with the same

swaging material. Another method for attaching the cable to the
bracket or bearing would be to use a form of silver solder with a

tensile strength of approximately 20,000 psi. This kind of silver

solder has been successfully used; however, the temperature of the

cable must be carefully controlled. The depth of the temperature

along the cable must also be controlled to keep the silver solder
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and any other strong solders from flowing along the cable.

The shearing strength of the joint is controlled by the
diameter, stranding, material composition of the cable, and the
width of the centerpiece. The centerpiece can be carefully drilled
to receive a precise diameter of cable and to create a specific
bearing boundary for the cable; thus, a i/4-inch diameter steel
cable could withstand a shearing load in excess of 1,000 pounds.
The length of the cable hole in the centerpiece also must be used
to control the degree of compliance. There must be a balance
between the cable diameter and the width of the centerpiece to
achieve a designated shearing force in conjunction with a
designated compliance. A compliant joint for a human body should
be subjected to small shear loads; thus, small diameter cable can
be used. But in robotic applications where substantial loads have
to be supported, larger diameter cables will be required.

This is a detailed description of the parts and the way in
which they are assembled. There are many modifications to this
joint, and some of them are described in Patent No. 4,932,806,
"Compliant Joint." In robotics, if two arms come together and a
certain amount of allowance for nonlinearity is desired, the joint
can be simplified. The same is true if damping is added in a
robotic arm.
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Figure 68. Bearing rotation.

Figure 69. Cable compliance takes over.
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Figure 72. Cross-sectional parts.
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CHAPTER 9

WALKER

Technical Field

This invention relates generally to a mobile support system

for the human body and, more particularly, to a cable-compliant

support system for dynamically supporting persons having limited
use of their lower extremities.

Background Art

Numerous devices presently exist for supporting injured or

postoperative patients and handicapped persons having limited use

of their legs. This refers to those devices that permit such

persons to become ambulatory under their own power. Such devices

include crutches, wheelchairs, and upright walkers, to name a few.

The elderly, who wish to move around and take care of themselves,

have a strong need today for this invention. It further can be used

by multiple sclerosis (MS) patients and paraplegics in the course

of their daily work and keep them going when, without it, they

would be forced to remain still.

Included in the prior art are what is known as compliant

devices, (more particularly cable-compliant devices), which

heretofore have been used to provide some degree of protection

against shock and/or vibration, as well as correction for

variations and misalignments between the two devices brought

together under some external control.

Robot technology has found a need to position an element at a

certain location where the possibility of substantial side and

angular misalignment exists between parts that are to become

mutually engaged. Such apparatus is taught, for example, in U.S.

Patent 4,946,421, entitled "Robot Cable-Compliant Devices," issued

on August 7, 1990, to James J. Kerley, Jr., one of the present

inventors. The compliant device disclosed therein is comprised of

at least two sets of cable segments whose longitudinal axes lie in

at least two planes and couple to two orthogonal frame members by

angle brackets that interconnect the cables to the frames.

Depending upon the stiffness imparted to the cable segments, six

degrees of freedom are provided to translate along mutually

orthogonal X, Y, and Z axes, as well as to rotate around each of

these axes. These six degrees of freedom are referenced to a

single point, which is the center of the compliance device lying

along the central logitudinal axis.

Heretofore, this technology has not been used in connection

with mobile assistance devices for enabling permanently or

temporarily handicapped persons to regain their mobility.
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Summary

Accordingly, it is an object of the present invention to

provide an improvement in body support systems.

Another object of the invention is to provide an improvement

in walker-type systems for aiding in the treatment and recovery of

persons who have temporarily or permanently lost the use of their
legs.

The foregoing and other objects are realized by a compliant

walker system comprised of an upright wheeled frame, which at least

partially surrounds an upright person wearing a body harness. The

harness is attached to the frame by means of a cable-compliant

connection composed of sets of cable segments and angle bracket

members connected between opposite side members of the frame and

adjacent side portions of the harness. The type of partial body
harness used takes two forms: the first is a torso harness that

completely encircles the waist or rib cage of the user, while the

second type is a hip harness that fits around the hips and

buttocks. The frame lends itself to several embodiments, one of

which completely surrounds the user. Other embodiments include an

open-ended frame that is adjustable in height to accomodate the

particular height of the user, with a pair of upright side members

that attach to the cable support system. This further allows the

user to increase the upper pressure on the body so that it will not

fatigue in the legs. This excessive fatigue usually comes later in

the day. With this adjustment, it is possible to bring the walker

down to the user, who can enter the walker in the seated position

and then, by the use of the ball screws, raise himself to the

upright position. Many of the elderly find it very difficult to

raise themselves into an upright position.

Brief Description of the Drawings

The following detailed description of the invention will be

more readily understood when considered with the accompanying
drawings.

Figure 73 is a top plan view, partially in phantom, of a first
embodiment of the invention.

Figure 74 is a rear plan view of the embodiment shown in
Figure 73.

Figure 75 is a side elevational view of the first embodiment

shown in Figures 73 and 74, including a phantom view of a user.

Figure 76 is a fragmentary perspective view generally

illustrative of one type of caster arrangement used in connection
with the invention.

Figure 77 is a top plan view of a second embodiment of the
invention.
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Figure 78 Is a rear plan view of the embodiment shown in

Figure 77.

Figure 79 is a side plan view of the embodiment shown in

Figures 77 and 78, including a phantom view of a user.

Figure 80 Is a top plan view of a third embodiment of the

invention.

Figure 81 Is a side plan view of the embodiment shown in

Figure 80.

Figure 82 is a rear plan view of the embodiment shown in

Figures 80 and 81.

Figure 83 is a partial perspective view illustrative of the

knock-down capability of the embodiments shown in Figures 80 and

82.

Figure 84 is a partial perspective view illustrative of one

means of closing the torso harness in accordance with the subject

invention.

Figure 85 is a partial perspective diagram illustrating

another means for closing the torso harness in accordance with the

subject invention.

Figure 86 is a partial perspective view of a means for raising

and lowering the side members of the embodiments shown in Figures

80 - 82.

Figures 87 and 88 are partial side and top plan views of an

outrigger subassembly for the walker frames illustrated herein.

Figure 89 is a perspective view of a rear hinge arrangement

for the torso harnesses shown herein.

Figure 90 is a perspective view showing one set of cable

segments of the cable support system shown in Figure 89.

Figure 91 is a top perspective view of an alternate embodiment

of a compliant cable support system used in connection with the

embodiment shown in Figures 80 - 82.

Figure 92 is a partial side elevation of a hip harness for use

in connection with the subject invention.

Figure 93 is a partial front planar view of the hip harness

shown in Figure 92.

Figure 94 is a partial rear planar view of the hip harness

shown in Figures 92 and 93.

Figure 95 is a rear plan view of a modification of a hip
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harness shown in Figures 92 - 94.
the walker.

Figure 96 is a working model of

Detailed Description of the Invention

Referring now to the drawings and to Figures 73 through 75,

reference numeral 24 designates a generally rectangular body

support frame of fixed height. The frame is hinged at the rear and

includes a plastic-type body harness (26) comprised of a light

rubber inner belt (28) that encircles the waist and/or rib cage

portion of a standing user (30) (Figure 75). The inner belt (28)

is split into two halves (32 and 34), as shown in Figure 73, and is

attached to a generally circular outer band member (36), which is

hinged at the rear by means of a piano-type hinge (38) connecting

semicircular outer band portions (40 and 42). A closure member

such as one of those shown in Figures 84 and 85 may also be used.

In the embodiment shown in Figure 84, this device or closure

(44) is depicted. Referring briefly to Figure 84, the closure is

comprised of a pin member (46), which is adapted to be inserted

into a pair of separated eyelet-type members (48 and 50) on the

band portion (42), while an intermediate eyelet member (52) is

located on the other band member (40).

As shown in Figure 85, an alternate-type closure member (44)

is illustrated. This is comprised of a hook-and-pile-type of

arrangement where, for example, the part (54) attached to the band

portion (42) includes a set of hook elements, while the part (58)

attached to the band portion (40) includes a pile section (60).
This arrangement is well known and marketed under the trademark

name of "VELCRO."

Referring back to Figures 73 - 75, the frame (24) is comprised

of two open side frame half sections (62 and 64), which are held

together by means of a pair of hinges (66 and 68) straddling two

vertical brace members (70 and 71), as shown in Figure 74. Four

vertical legs (72, 74, 76, and 78) fit into respective square lower

end tube members (80, 82, 84, and 86), on the bottom of which are

attached respective wheelchair-type casters (88, 90, 92, and 94).

When further stability is required, an arrangement such as

that shown in Figure 76 can be used where the lower tube member

(84), for example, terminates in a pair of right-angled extension

members (96 and 98) to which casters (92) are attached.

The torso harness (26) comprises a partial body harness andis

adapted to encircle the user. The harness is attached to the frame

(24) by means of a cable-compliant support apparatus (25) that

includes eight sets of wire cable segments ( I00, 102,... 112, and

114), with four sets located in parallel pairs on either side of

the harness between upper side rails (116 and 118) (Figure 73).

Each set of cable segments is identical in construction, with one

set of cable segments (i00) for purposes of illustration in Figure

90. These four equal-length cable segments (27) are held in
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parallel relationship between two rectangular blocks or end pieces

(29 and 31) equally separated. The cable segments can be inserted

and swaged into metallic end pieces; however, when desired, the end

pieces can be of molded plastic in which the cable segments are set

into place during fabrication. Also, they could be machined parts,

when desirable. While four cable segments are shown for purposes

of illustration, any number of cable segments can be used,

depending on the particular design.

Between mutually adjacent sets of end segments (for example,

segments i00 and 102, 104 and 106, 108 and ii0, and 112 and 114, as

shown in Figure 73), there is a respective right-angle bracket

(120, 122, 124, and 126) that is secured to the cable. The inside

cable segment sets (102, 104, ii0, and 112) are bonded to the

encircling band portions (40 and 42) or the outer band (26), while

the outer sets (i00, 106, 108, and 114) are secured to plates (128

and 130) bonded to the side rails (116 and 118), respectively.

As shown in Figure 79, when a person is strapped in an upright

position into the torso harness (25), the frame can be moved in any

direction by the feet, assuming that there is adequate use of the

legs.

If the person using the compliant walker loses his balance or

wishes to take the weight off his legs, he simply needs to bend the

knees and the compliant-cable support harness (26, in Figure 73)

will hold him up regardless of his orientation relative to a

central vertical axis through the walker structure. One is thus

able to take as much weight off the legs as desired. For example,

with 75% of the weight going to the legs, a person undergoing

rehabilitation can gradually rebuild leg strength.

If necessary, a robotic device could be attached to the side

of the walker to raise and lower the user on demand. The cables

are strong enough to hold the user securely, yet are flexible

enough to allow swaying of the hips during walking. This allows

the person to bend over at the waist to pick up or put down an

object.

The materials from which the compliant walker is fabricated

can be of any desired type; however, one, in particular, is light-

weight fiber plastic currently being used in space technology. For

early use, a simple aluminum frame can be used.

This leads to consideration of the second embodiment of the

invention, which is disclosed in Figures 77 - 79. This embodiment

uses single upright side-support members (132 and 134) located on
either side of the user, as shown in Figure 77, while being

connected to the compliant-cable support system (25) via the plates

(128 and 130). The side members are located midway between a pair

of elongated horizontal base members (136 and 138), which

additionally include telescoping outrigger members (140, 142, 144,

and 146) that can be selectively moved in and out of the respective

carriage members (136 and 138) to supply additional stability.
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Again, four casters (Figure 76), three of which are shown in

Figures 79 and 80 by reference numerals 148, 150, and 152 permit

the whole assembly (24') to be rolled across the floor in any
direction.

The vertical support members (132 and 134) slide inside an

outer jacket (154 and 156, in Figure 78) to permit the cable

support system to be raised and lowered to fit the torso of the

user, as shown in Figure 79. Means of adjustment (not shown) are

included for maintaining a desired fixed elevation of the assembly.

Such means may include, for example, a set of holes and retaining

pins through the side surfaces of the upright members (132, 154,

and 134, 156, in Figure 78). Another solution could be a ball

screw with a folding handle on the top. When the right position is

attained, the handle folds down and locks the ball screw in place.

Another advantage of this type of raising and lowering is that the

walker can be lowered until it meets the seated person and raises

him to a vertical position. This is a distinct advantage of a

walker for older people who are afraid of falling while raising

themselves. In the case of others whose weight limits their

getting up, this walker helps them rise so that they can be active

part of the time.

The embodiment shown in Figures 77 - 79 permits a person using

the walker assembly to walk up flush to a counter or work surface

(not shown) merely by pushing back the front outrigger members (140

and 142). This embodiment also has an open front (Figure 77),

which makes it easier for the user to carry something while he is

walking.

A third embodiment of the compliant walker is shown in Figures

80 - 82 and is intended to show, among other things, a "knockdown"

assembly (24"), which can be readily transported for travel, as

well as for storage. The frame members (162 and 164, in Figure 82)

are height-adjustable within vertical channel members (166 and

168), which, in turn, are secured to elongated horizontal base

members (170 and 172). The base members have telescoping forward

extensions (174 and 176, in Figure 80) to which is attached a pair

of casters (178, in Figure 81). A pair of wheels, one of which is

shown by reference numeral 182 in Figure 81, is located at the rear

portion of the horizontal frame members and can be motor driven,

for example, by respective motors (184 and 186, in Figure 82)

mounted above the rear wheels. In this way, the entire assembly
can be motor driven under the control of the user. At the rear of

the assembly, the horizontal frame members terminate into

telescoping end sections (188 and 190) by way of angulated

connecting members (192 and 194) (Figure 82). This is further

shown in Figure 83, where a metal pin (196) is adapted to pass

through the holes (198 and 200) when aligned to lock the two halves

of the structure in place for use. The compliant support

structure is merely modified to provide two equal portions that can

be assembled front to back via the eye and pin structure shown in

Figure 84 or, when desirable, by the "VELCRO" arrangement shown in

Figure 85.
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Additionally, the side support members (162 and 164, in Figure

82) are adapted for height adjustment within the lower members (166

and 168). This is provided by a thread or ball screw assembly (not

shown) located in the lower frame elements, which couple to

respective height-adjustment knobs (198 and 200). The ball screws

can be adjusted to allow the body to move down to a sitting

position. Likewise, the same ball screw could raise the person to

a vertical position. The height-adjustment lever could also be

used as a locking mechanism to hold the height desired. It is

significant to note that the angled side support members (158 and

160) permit users to more freely use their arms, because there is

less obstruction outwardly to the side.

While the embodiment shown in Figures 80 - 82, for example,

only calls for forwardly telescoping front-end extensions (174 and

176), when desirable, pivoted outrigger elements such as those

shown in Figures 87 and 88 can be used. This arrangement permits

better stability of the walker structure, as desired.

As shown in Figure 91, a modification of the compliant-cable

support system (designated by reference numeral 25') can be used

with the embodiment shown in Figures 80 - 82. This configuration

consists of rearranging the sets of cable segments (i00 - 114) into

a more rectangular arrangement by the inclusion of elongated back

plate members (202 and 204) attached to the upper vertical portion

of the upright side members (158 and 160). This arrangement

includes an additional set of right-angle brackets (206, 208, 210,

and 212) to be used in conjunction with the cable sets (i00, 102,

104, 106, 108, Ii0, 112, and 114). Further, as shown, the right-

angle brackets (120, 122, 124, and 126) act in conjunction with the

angle brackets to provide a rectangular configuration of the

compliant-cable structure.

While a torso type of partial body harness has been considered

thus far, when desirable, a hip type of harness can be used, shown

in Figures 92 - 94. A girdle-type harness structure (26') is

adapted to encircle the hip regions (214 and 216) and buttock

region (218) while being partially openat the front, where it can

be drawn together and fastened by means of a belt-type closure

(220) over the abdomen region (222). The belt-type arrangement may

be fabricated of nylon and may include a "VELCRO" closure section

(224). The harness includes relatively soft quick-release

elasticized leg straps (226 and 228) that extend from the hip

regions through the crotch area (230), where they attach to the

backside portion (232, as shown in Figure 94).

A pair of cable-segment attachment members (234 and 236) are

secured to the harness at the hip regions on either side of the

user. Thus, instead of being supported in the upper region of his

body, the user is now supported around his hips and seat.

A variation of this type of harness is shown in Figure 95. The

cable attachment member at the hip is modified as a structure
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Figure 73. Wraparound walker.
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Figure 96. Working model of walker.
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CHAPTER i0

COMPLETE COMPLIANT ROBOTIC SYSTEM

There are many needs for a simple compliant analogue-digital

system in the machine and machine-tool business. There is a
further need for this type of system among the elderly and

handicapped who cannot perform all of their bodily functions

without help.

Figure 97 shows a picture of a small compliant robotic system

that was made to put a socket on a nut and back it off, even if the

nut were at an angle to the wrench. Further, the centerline of the

wrench could be displaced from the centerline of the nut, and the

nut could be vibrating back and forth while the wrench is trying to

find the nut. Then after finding the nut, the wrench backs the nut

off the bolt at an odd angle while the nut is vibrating back and

forth. The man on the left is holding his left hand just on top of

the nut. The wrench can be seen lined up with the nut. The man'on

the far right is moving the robotic system, which can move up and

down, back and forth, and in and out. He can also rotate the

wrench that turns the nut.

In a robotic station, the entire system can be run with servo-

motors performing all of these tasks. The robotic system could be

analogue, digital, or a combination of both. The man with the

oscilloscope at center right is reading the position of the wrench

as it meets the nut. This provides a feedback system that could be

used to adjust the robot to find the optimum position to be in to

perform the task of taking the nut off.

This simple system was designed and fabricated to perform a

simple task. However, it could be used to perform far more complex

tasks. One will be described later in this section.

Figure 98 shows a six-step function used with compliance to

approach a nut that is out of line with the wrench, capture the

nut, and then back it off.

Step i. The nut at the bottom is still, while the socket

wrench is on top and twisting.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

The wrench comes in closer.

The wrench comes in even closer.

The wrench touches the nut.

The wrench is turning as it fits itself over the

nut.

The wrench is turning the nut and tightening it up.

In Chapter ii, a line-dimension sketch explains this motion.
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Figure 99 shows a six-step function to be used by this

compliance mechanism to approach a nut that is vibrating. The

wrench is moving straight in while it is rotating about its axis.

After the wrench captures the nut, it torques it up, even though
the wrench is vibrating back and forth.

The same compliance would perform as well if it were the nut

instead of the wrench that vibrates. It works equally well if both

the wrench and the nut are vibrating, even at different
frequencies.

Step I.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

The nut at the bottom is moving to the left.

The nut is starting to move to the right.

The nut is moving to the right.

The nut is at the extreme right position.

The nut is starting to come back.

The socket is fitting itself over the nut. Then it

turns the nut while the nut is still vibrating. If

a solid wrench were used, it would stop cold or

break the nut if it did not have cable compliance.

The ability of the cable to handle six-degree-of-

freedom compliance means that the nut could be at

any angle or any displacement while the nut is

vibrating.

Figure i00 shows an electronic feedback measurement while the

wrench approaches the nut. In Figure i00, four LVDTs (36), which

may be displaced between the compliant joint brackets (as partially

shown in Figure 97), sense varying displacement during robotic

operations. The transformers operate on ac signals developed from

internal oscillators powered by the 6 V dc power supply (37). The

larger ac signals, converted internally to dc signals, indicate

larger displacements. These dc signals are fed into a signal

conditioner that contains four operational amplifiers (38), one for

each of the four transformers. These operational amplifiers are

adjustable in terms of gains, as well as output, a zero or null

signal corresponding to each transformer,s static position. During

operation, as the distance between the bracket changes, more and

less, from the static position, the operational amplifier outputs

will vary, plus and minus, about the zero position. The outputs

from the signal conditioner operational amplifiers are imputed to

another group of four operational amplifiers (40) configured as

summing amplifiers and two operational amplifiers configured as

differential amplifiers (42) whose outputs may then be employed to

drive oscilloscope X, Y coordinate amplifiers (44) to indicate the

relative robotic joint position. These outputs may also be

employed as feedback control signals to aid in changing the joint

position. Alternatively, the oscilloscope "dot" (46) may be used,

with human intervention, to aid in changing joint position to
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acquire a work object.

Figure i01 shows a handicapped patient's station where this

robotic system could be used to supply the patient with food,

drink, reading material, telephone, desk computer, and the

equipment to wash the face and hands and comb the hair. The

patient could use this system to operate the robotic system shown

on tracks above the table. This is the same principle that is used

in the model. Compliance is used because in this way the patient

cannot be injured by the robotic arm. Compliance is in the robotic

arm wrist, elbow, and shoulder joints. The compliance is useful

also, since no expensive robotic system is required to operate it.

It is an analogue system, and thus the brain of the computer is

simply the thinking of the patient. The patient can use one of the
wands shown in the center of the table to follow through on any of

the functions shown above. It may take a little time to move the

arm to the proper position, but the patient has control of the

system at all times. It gives him something to do and, at the same

time, gives him the confidence to see that he is an integral part

of the system.

This system can also be performed by a digital-analogue

technique. Once a function, like opening the oven door, is done by

analogue, it can be put to memory by a digital process. The

operator, then, can use either an analogue or a digital program to

handle his motions.
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CHAPTER ii

THE MODIFIED CABLE COMPLIANT MECHANISM

Introduction

This chapter describes how the cable compliant mechanism

design was specialized for use in robotics and tested. Figure 102

shows the completed CCM, and Figure 103 shows it in operation.

There were two main motivations for the new design: maximize its

flexibility, and reduce its size. The mechanism height is of

primary concern, since it contributes to the distance between the

workpiece and the robot pitch, yaw, and roll joints. In operation,

a greater distance results in greater load on the joints and less

positioning accuracy.

Design Requirements

The original request was for the CCM to carry 200 pounds and

fit into a 6 X 6 X 4-inch envelope. The LVDTs were to measure plus

or minus 1 inch of compliance in all six degrees of freedom. As

mentioned before, the LVDTs are essential for determining the

relative plate positions for the robot controller.

Since the LVDTs, as configured to measure six-degree-of-

freedom motion, could not fit into a 6 X 6 X 4-inch envelope, the

envelope and flexibility requirements were relaxed. The final

design fit into a 9 X 9 X 7-inch envelope, but incorporated some of

the robot's sensing equipment, thus, giving an effective height of

only 5 1/4 inches.

Three-dimensional motions were first visualized on paper with

overlays. Semiopaque drafting paper had bottom plate features on

one piece and top plate features on the other. The corresponding

features were aligned, then moved in various directions to simulate

six-degree-of-freedom motion. Orthographic projections facilitated

this technique. The most critical motion was found to be a

clockwise rotation of the upper U frame about the Z axis. This

caused the LVDTs to interfere.

A cardboard and balsa model was developed, which clearly

revealed this and also confirmed a solution. In three dimensions,

important features showed up that were missed with the other

techniques.

An assembly drawing proved very useful for visualizing the

design progress. At first, it was more of a layout sketch than a

drawing, because none of the component details had been worked out.

However, as the project took shape, the assembly drawing provided

a useful overall view.

Design of Components

Individual components were designed, keeping in mind the goals
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of reducing device size and maximizing flexibility. There were

three areas of design innovation: i) the angle pieces, 2) the top

and bottom plate positions, and 3) the LVDT positions.

Angle Pieces

The angle pieces keep the cable ends rigid with respect to

each other in the four corners of the compliant mechanism. Figure

104, Part a, shows the original design of one angle, consisting of
four pairs of clamp halves, with semicircular grooves to hold the

cable, and a base to which the clamps were bolted. This concept
was strong, simple, and cheap, but bulky.

A proposed modification made three pieces do what nine did

before. Figure 104, Part b, shows how the design could be made

smaller and the number of screws and their protrusion could be

reduced. One of each pair of cable clamp halves was eliminated by

putting the semicircular grooves in the base. One large, diagonal

screw clamped two pairs of cables where eight were used before.

This concept was less bulky and would have been simpler to assemble

because there were fewer screws; however, the offset screw could

not adequately clamp the cables.

The final version is shown in Figure 104, Part c. It is
smaller than either previous design and combines the best features

of both. The screws are countersunk into the top cable clamp half
to eliminate their protrusion, and they pass between each cable
end. The clamping force is more evenly distributed over the cable

and is nearly equal to that of the original design. The same
concept was used to reduce the clamp size on the U frames where the
other ends of the cables are fastened.

I

Plate Positioning

The distance between the upper and lower U frames was reduced,

since it constituted a large part of the device height. This

decreased the LVDT angle from the horizontal, providing a secondary

benefit by improving the measurement accuracy for horizontal
motions. (To yield the same accuracy for both vertical and

horizontal plate motions, the LVDTs should be inclined at 45

degrees.) Because of the CCM envelope constraint, the LVDTs were

originally inclined at the relatively steep angle of 72 degrees
from the horizontal in the neutral position. This favored

measurement of vertical motions. Ordinarily, decreasing this angle
would mean increasing the CCM length and width; however, it was
done with minimum effect on these envelope dimensions.

Originally the LVDTs were attached directly to the surface of

both plates with ball ends. Figure 105 shows schematically how
the plate and LVDT arrangement changed to compromise between a

shallow LVDT angle and small CCM dimensions. (The side members of

the lower U frame and five other LVDTs are not shown in this

figure.) Figure 105, Part a, shows the LVDT at a 72-degree angle.

Figure 105, Part b, shows the first modification: The upper U frame
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was lowered, and the LVDT passed through the bottom plate on a

spherical bearing pivot. The angle was decreased to 65 degrees.

A standoff plate was added to attach the CCM to the robot. This

reduced the flexibility of the CCM by decreasing the clearance

between the two U frames. The clearance was restored by moving the

upper U-frame side members upward relative to the frame's

horizontal portion, as shown in Figure 105, Part c. The force

sensor, shown on the top plate, was nested inside the cable area.

The lower side members, though not shown, had to be lengthened.

This compact design reduced the height of the CCM by 1 inch.

The LVDT stroke efficiency was improved by 27% for horizontal

measurement, but decreased by only 5% for vertical measurement.

The next section describes the LVDT positioning in the new plate

positions.

LVDT Positions

Positioning the LVDTs in the bottom plate required careful

three-dimensional visualization. They had to fit into the smallest

possible space and not interfere with either each other or the side

members during CCM operation.

Each pair of LVDT rods crossed, as shown in Figure 106, so as

to make the angle shallow. Compare this with the original

configuration shown in Figure 33. This made interference

verification very important. The top view shows how the LVDT rods

in each pair point in different directions so as to clear each

other when the top plate rotates about the vertical axis. The

cardboard model served to illustrate the motions quickly and

simply.

Results

Weight calculations, which were confirmed after fabrication,

showed an overall CCM weight of 15 pounds. Stress analysis was

performed on all critical areas of the CCM. The stress conditions

were bending in the side members shear, load on the standoff bolts

cable pullout from the clamps and the holding of the cable clamp

screws. Each had a factor of safety greater than 6.

Conclusion

The final envelope of the new CCM is 9 X 9 X 5 inches, with

±l-inch flexibility in five degrees of freedom and ±7/8-inch

flexibility in 1 horizontal translational degree of freedom. Based

on a 200-pound workpiece, stress analysis of the completed design

shows a factor of safety of at least 6 for each critical load-

carrying area.

After assembly, the CCM was tested to 1 1/4 times its rated

load capacity (250 pounds) on the Tinius Olsen static testing

machine.
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Figure 103. Compliant cable mechanism in use.
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